Effect of bio-inspired surface texture on the resistance of 3D-printed polycarbonate bonded joints

Author:

Naat N1ORCID,Boutar Y12,Naïmi S13,Mezlini S1ORCID,da Silva LFM4ORCID

Affiliation:

1. Mechanical Engineering Laboratory, National Engineering School of Monastir, Monastir University, Monastir, Tunisia

2. Faculty of Civil Engineering CVUT, Department of Steel and Timber Structures, Czech Technical University in Prague, Prague, Czech

3. College of Engineering, Jazan University, Jazan, Saudi Arabia

4. Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade do Porto, Porto, Portugal

Abstract

Surface preparation before adhesive bonding is crucial to improve the resistance and durability of the joint by altering the surface properties of the adherend. The purpose of surface treatment is to clean the surface from contaminants, activate the adherend surface and create an optimal surface structure to promote adhesion mechanisms. In that context, this work aims to investigate the influence of substrate surface texturing on the resistance of adhesive joints. Two bio-inspired surface textures were investigated, Fish scale (FS) and Tree frog (TF). Polycarbonate (PC) specimens with different surface patterns were manufactured using the fused deposition modelling process. Surface morphology, such as pattern dimension (shape and depth), surface roughness (Ra), and wettability, were used to characterise the substrates. The influence of these texture patterns on the shear strength of adhesively bonded joints was evaluated through the standardised block shear test method ASTM D4501-01. Moreover, the shear strength of the structured joints was compared to the results from bonding with polished surfaces (surfaces abraded with 80, 600 and 1000 grit paper), and with as-printed surfaces. The results revealed that the FS and TF surface textures enhanced the shear strength by 242% and 283% compared to the adhesive joints with polished surfaces. It was also shown that the variation in depth of the bio-inspired surface texture has no significant impact on the joint strength. Failure analysis demonstrated that the fracture mode of bonded joints with polished surfaces was the adhesive failure while mixed failure (cohesive and adhesive) characterises the as-printed, TF and FS surfaces. Worthy results are obtained rising the effectiveness of surface texture for the PC's bonded joints. Graphical Abstract [Formula: see text] This is a graphical representation of the abstract.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3