Towards finding a novel constant between local and bulk strength of friction stir processed aluminum alloys

Author:

Satyanarayana MVNV1ORCID,Kumar Adepu1,Kranthi Kumar K1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Warangal, India

Abstract

Friction stir processing has gained remarkable success in producing ultrafine-grained structures and surface composites. In this context, the primary objective is to establish a linear relationship between local strength (i.e. hardness) and bulk mechanical strength (i.e. tensile strength) of friction stir processed aluminum alloys using experimental investigations on selected alloy system together with data reported in literature sources. Initially, authors generated a linear relation between hardness and strength of friction stir processed aluminum alloys under different cooling conditions. After friction stir processing, recrystallized fine grains were formed and better refinement was achieved in cooling-assisted friction stir processing. Irrespective of grain refinement, the strength and hardness of friction stir processed samples were found to be lower compared to the base metal due to the precipitation phenomenon during friction stir processing. At the same time, hardness and strength improved in cooling-assisted friction stir processing compared to natural-cooled friction stir processing due to better grain refinement going by the parameters of Hall–Petch equation. For friction stir processed samples, relevant constants were found using Hall–Petch equation. The experimental values of hardness and strength were well fitted with the formulated equations due to the formation of a homogeneous fine-grained structure. Also, two novel linear relations were successfully established between hardness and strength with proportionality constants of 1.9 and 2.7, respectively. On the other hand, it was also concluded that it is not possible to establish a linear relation between hardness and strength of surface composites due to structural inhomogeneity and agglomeration of reinforcement particles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3