An experimental evaluation of cryogenic machining in the drilling of carbon fiber reinforced plastics for aerospace

Author:

Martínez Javier1,Hernández Primo2,Carou Diego3ORCID

Affiliation:

1. Hergome S.L., Mos, Spain

2. Universidade de Vigo, Departamento de Deseño na Enxeñaría, Vigo, Spain

3. Universidade de Vigo, Escola de Enxeñaría Aeronáutica e do Espazo, Departamento de Deseño na Enxeñaría, Ourense, Spain

Abstract

The present research aims at studying both dry machining and alternative solutions to wet machining in the drilling of carbon fiber-reinforced polymers (CFRPs). CFRPs are key materials in aerospace and their drilling is critical and challenging. Specifically, cryogenic fluids such as CO2 and N2 were investigated. Drilling tests were performed using three different CFRP laminates. These CFRP laminates are composed of various unidirectional plies of different orientations. Thus, the configurations to analyze were: 0/90/45, 30/60 and 0/90. As output variables, surface roughness, diameter deviation, delamination and thrust forces were analyzed. In general, the internal application of CO2 and dry machining were the best- and worst-performing techniques for surface roughness, respectively. Regarding the dimensional quality, both CO2 and dry machining offered the best results. In the case of LN2 or LN2 + CO2, the results showed that the CFRP configuration is critical for the obtained results. However, it was identified that cryogenics can improve the results of the dry machining process under certain conditions in terms of delamination. Finally, in general, CO2 provided the worst results when attending to the thrust forces.

Funder

Centre for Industrial Technological Development

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3