Impact of graphite particle surface modification on the strengthening of cross-linked polyvinyl alcohol composites: A comprehensive investigation

Author:

Agrawal Pawan Kumar1,Sharma Pragya1,Verma Akarsh23ORCID,Singh Vinay Kumar1,Chaudhary Arun Kumar1ORCID,Chauhan Sakshi1ORCID

Affiliation:

1. Department of Mechanical Engineering, G. B. Pant University of Agriculture & Technology, Pantnagar, India

2. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, India

3. Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan

Abstract

To reduce the hydrophilicity of polyvinyl alcohol (PVA), various methods are employed. Acid cross-linking is one technique, but it decreases the polymer's strength. To address this, different reinforcements are utilized to enhance the polymer's strength while mitigating the side effects of acid cross-linking. The present research intends to improve the physical, mechanical, and thermal properties of PVA by cross-linking it with fumaric acid and reinforcing it with modified graphite particles. The particles were prepared through oxidative acidic treatment and added in different weight proportions (0.5, 1, 1.5, and 2 wt.%) to the PVA matrix. Water absorption (WA) tests were conducted to affirm the formation of cross-linked bonds, and Fourier transform-infrared spectroscopy was employed to confirm the oxidation of the graphite particles with acid. The composites were examined using scanning electron microscopy, which revealed a robust interfacial adhesion between the modified graphite and cross-linked PVA, resulting in better mechanical characteristics. The highest ultimate tensile strength was observed when using 1.5 wt.% of modified graphite particle reinforcement, resulting in a 31% increase in comparison to pure cross-linked PVA. Moreover, the thermal stability increased from 358°C (PVA alone) to 375°C (composite with 2 wt.% treated graphite particles). Dynamic mechanical analysis revealed an increase in glass transition temperature from 68.2°C to 72.9°C, and activation energy from 604.84 to 1028.21 kJ mol−1 (neat PVA to composite with 1.5 wt.% modified particles). The damping coefficient of the cross-linked composite was 0.257, making it suitable for acoustic damping applications like speakers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3