A computational intelligence approach for solar photovoltaic power generation forecasting

Author:

Nesmachnow Sergio1,Risso Claudio1

Affiliation:

1. Universidad de la República, Uruguay

Abstract

This article describes an approach applying computational intelligence methods for the problem of forecasting solar photovoltaic power generation at country level. Precise forecast of power generation plays a vital role in designing a dependable photovoltaic power generation system. The computed predictions enable the implementation of efficient planning, management, and distribution strategies for the generated power, ultimately enhancing the performance and efficiency of the system. The study analyzes and compares artificial neural network approaches for a specific case study using real solar photovoltaic power generation data from Uruguay in the period 2018 to 2022. Several artificial neural network architectures are evaluated for forecasting. The main results indicate that the approach applying a combination of Encoder-Decoder and Long Short Term Memory artificial neural networks is the most effective method for the addressed forecasting problem. The approach yielded promising results, with an average mean error value of 0.09, improving over the other artificial neural network architectures. Even better results were obtained for sunny days. The generated forecasts hold significant value for its application in planning and scheduling processes, aiming to enhance the overall quality of service of the electricity grid.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3