Affiliation:
1. Harvard Graduate School of Education, Cambridge, MA, USA
Abstract
Background We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting practices for everyone in their jurisdiction in order to reduce rates of pre-trial detention while maintaining court order and public safety, we have no natural and available comparison group other than the past. Objectives In these contexts, it is imperative to model pre-policy trends with a light touch, allowing for structures such as autoregressive departures from any pre-existing trend, in order to accurately and realistically assess the uncertainty of our projections. We aim to provide a methodological approach rooted in commonly understood and used modeling tools to achieve this. Research Design We quantify uncertainty with simulation, generating a distribution of plausible counterfactual trajectories to compare to the observed; this approach naturally allows for incorporating seasonality and other time-varying covariates, and provides confidence intervals along with point estimates for the potential impacts of policy change. Results We find simulation provides a natural framework to capture and show uncertainty in the ITS designs. It also allows for easy extensions such as nonparametric smoothing in order to handle multiple post-policy time points.
Funder
MDRC
U.S. Department of Education, Institute for Education Sciences
Subject
General Social Sciences,Arts and Humanities (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献