A Bayesian Analysis of a Cognitive-Behavioral Therapy Intervention for High-Risk People on Probation

Author:

Han SeungHoon1ORCID,Hyatt Jordan M.2ORCID,Barnes Geoffrey C.3,Sherman Lawrence W.4

Affiliation:

1. School of Public Service, Chung-Ang University, Seoul, South Korea

2. Department of Criminology and Justice Studies, Drexel University, Philadelphia, PA, USA

3. Lecturer in Evidence-Based Policing, Institute of Criminology, University of Cambridge, Cambridge, UK

4. Director of Research, Jerry Lee Centre of Experimental Criminology, University of Cambridge, Cambridge, UK

Abstract

This analysis employs a Bayesian framework to estimate the impact of a Cognitive-Behavioral Therapy (CBT) intervention on the recidivism of high-risk people under community supervision. The study relies on the reanalysis of experimental datal using a Bayesian logistic regression model. In doing so, new estimates of programmatic impact were produced using weakly informative Cauchy priors and the Hamiltonian Monte Carlo method. The Bayesian analysis indicated that CBT reduced the prevalence of new charges for total, non-violent, property, and drug crimes. However, the effectiveness of the CBT program varied meaningfully depending on the participant's age. The probability of the successful reduction of drug offenses was high only for younger individuals (<26 years old), while there was an impact on property offenses only for older individuals (>26 years old). In general, the probability of the successful reduction of new charges was higher for the older group of people on probation. Generally, this study demonstrates that Bayesian analysis can complement the more commonplace Null Hypothesis Significance Test (NHST) analysis in experimental research by providing practically useful probability information. Additionally, the specific findings of the reestimation support the principles of risk-needs responsivity and risk-stratified community supervision and align with related findings, though important differences emerge. In this case, the Bayesian estimations suggest that the effect of the intervention may vary for different types of crime depending on the age of the participants. This is informative for the development of evidence-based correctional policy and effective community supervision programming.

Funder

National Institute of Justice

Smith Richardson Foundation

Publisher

SAGE Publications

Subject

General Social Sciences,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3