A Combinatorial Optimization Framework for Scoring Students in University Admissions

Author:

Shao Lucy1,Levine Richard A.2ORCID,Hyman Stefan3,Stronach Jeanne4,Fan Juanjuan2

Affiliation:

1. Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, USA

2. Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA

3. Enrollment Student Services, San Diego State University, San Diego, CA, USA

4. Analytic Studies & Institutional Research, San Diego State University, San Diego, CA, USA

Abstract

Background and Objectives Selecting applications for college admission is critical for university operation and development. This paper leverages machine learning techniques to support enrollment management teams through data-informed decision-making in this otherwise laborious admissions processing. Research Design and Measures Two aspects of university admissions are considered. An ensemble learning approach, through the SuperLearner algorithm, is used to predict student show (yield) rate. The goal is to improve prediction accuracy to minimize over- or under-enrollment. A combinatorial optimization framework is proposed to weigh academic performance and experiential factors for ranking and selecting students for admission. This framework uses simulated annealing, and an efficacy study is presented to evaluate performance. Results The proposed framework is illustrated for selecting an incoming class by optimizing predicted graduation rate and by developing an eligibility index. Each example presents a selection process under potential academic performance and experiential factor targets a university may place on an admitted class. R code is provided for higher education researchers and practitioners to apply the proposed methods in their own settings.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

General Social Sciences,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3