Neural Networks to Estimate Generalized Propensity Scores for Continuous Treatment Doses

Author:

Collier Zachary K.1ORCID,Leite Walter L.2ORCID,Karpyn Allison1ORCID

Affiliation:

1. University of Delaware, Newark, DE, USA

2. University of Florida, Gainesville, FL, USA

Abstract

Background: The generalized propensity score (GPS) addresses selection bias due to observed confounding variables and provides a means to demonstrate causality of continuous treatment doses with propensity score analyses. Estimating the GPS with parametric models obliges researchers to meet improbable conditions such as correct model specification, normal distribution of variables, and large sample sizes. Objectives: The purpose of this Monte Carlo simulation study is to examine the performance of neural networks as compared to full factorial regression models to estimate GPS in the presence of Gaussian and skewed treatment doses and small to moderate sample sizes. Research design: A detailed conceptual introduction of neural networks is provided, as well as an illustration of selection of hyperparameters to estimate GPS. An example from public health and nutrition literature uses residential distance as a treatment variable to illustrate how neural networks can be used in a propensity score analysis to estimate a dose–response function of grocery spending behaviors. Results: We found substantially higher correlations and lower mean squared error values after comparing true GPS with the scores estimated by neural networks. The implication is that more selection bias was removed using GPS estimated with neural networks than using GPS estimated with classical regression. Conclusions: This study proposes a new methodological procedure, neural networks, to estimate GPS. Neural networks are not sensitive to the assumptions of linear regression and other parametric models and have been shown to be a contender against parametric approaches to estimate propensity scores for continuous treatments.

Publisher

SAGE Publications

Subject

General Social Sciences,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3