Analysis of vibration isolation performance of parallel air spring system for precision equipment transportation

Author:

Qu Di1,Liu Xiandong1,Liu Guangtong2,Bai Yifan1,He Tian1ORCID

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing, China

2. Beijing Institute of Spacecraft Environment Engineering, Beijing, China

Abstract

Precision equipment is usually accompanied with vibrations during road or railway transportation. Sometimes the vibration exceeds the given limit, leading to the damage of the equipment. It is necessary to control the vibration during the transportation. However, it is still difficult to adjust the parameters of a designed vibration isolation system for the transportation of different precision equipment under various road conditions. Aiming at satisfying the vibration isolation requirements of different precision equipment, this paper proposes a parallel air spring vibration isolation system based on the principle of limiting lateral deflection. According to the measured parameters, a rigid-body dynamics simulation model of parallel air spring vibration isolation system is established. Then its feasibility is verified, and the optimal parameters of the vibration isolation system are obtained by a simulation. Finally, the vibration isolation system is built and installed in the equipment to carry out the real vehicle transportation test. The test results show that the transportation vibration isolation system based on the parallel air spring structure has not only excellent vibration isolation efficiency but also acceptable lateral stability. The research results in this paper can provide a reference for the design of the vibration isolation system for the large precision equipment transportation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3