Piecewise fast multi-power reaching law: Basis for sliding mode control algorithm

Author:

Yang Guang-Yu1ORCID,Chen Si-Yi1ORCID

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan, China

Abstract

A piecewise fast multi-power reaching law (PFMPRL) is proposed aiming at the problems of chattering and slow convergence in the reaching phase of sliding mode control (SMC). In this paper, the fast power reaching law and the double power reaching law are combined, and a nonlinear function is introduced to design the exponential term in PFMPRL. The proposed method ensures the characteristic of fast convergence of the system at all the phases of tendency. The characteristic of fixed-time convergence has also been satisfied. The study proves that the system state can converge to steady-state error bounds within a finite time in the presence of system uncertainty and bounded external disturbance. Compared with the existed methods, the proposed method has shorter convergence time and smaller steady-state error bound. To suppress the influence of model uncertainty and disturbance in system control, a non-linear disturbance observer (NDO) is introduced, and combined with the reaching law-based non-singular terminal sliding mode control (NTSMC), is applied to the cart inverted pendulum system. Simulation results and numerical analysis verify the effectiveness and superiority of this approach.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disturbance observer based non-singular fast terminal sliding mode control of permanent magnet synchronous motors;Journal of Power Electronics;2023-11-25

2. Adaptive nonsingular fast terminal sliding mode control for the tracking control of underactuated autonomous underwater vehicles;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-11-07

3. Fuzzy sliding mode control of PMSM based on PSO;IEICE Electronics Express;2023-10-25

4. Novel anti-disturbance fast terminal sliding mode control with improved quick reaching law for DC-DC buck converter;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-02-05

5. Finite-Time Fault-Tolerant Control for a Stewart Platform Using Sliding Mode Control With Improved Reaching Law;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3