Optimal trajectory planning of robot energy consumption based on improved sparrow search algorithm

Author:

Zhou Yaosheng1,Han Guirong12,Wei Ziang34,Huang Zixin34ORCID,Chen Xubing1,Wu Jianjun5

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, China

2. School of Industrial Design, Hubei Institute of Fine Arts, Wuhan, Hubei, China

3. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan, China

4. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, China

5. Huangshi Jiufeng Intelligent Electromechanical Co., LTD, Wuhan, China

Abstract

In order to reduce the energy consumption of the welding robot and ensure the cooperative movement of the robot joints, a trajectory planning method with optimal energy consumption based on improved sparrow search algorithm is proposed. Firstly, the trajectory planning model with optimal energy consumption is established based on the joint torque and angular velocity of the robot. To make the velocity, acceleration and jerk of each joint of the robot be bounded and continuous, the joint space trajectory is constructed with seventh degree B-spline curve. The total energy consumption of the robot is calculated by combining kinematic and dynamic parameters. On the basis of improved sparrow search algorithm, the time series corresponding to the optimal energy consumption is solved by using elite reverse learning, non-dominated sorting and Gaussian-Cauchy variation strategy, and then the optimal continuous motion trajectory of energy consumption is planned. The simulation results show that the proposed method can not only achieve continuous smooth control objective, but also effectively reduce energy consumption.

Funder

Hubei Province Nature Science Foundation

Hubei Province Technology Innovation Key Research and Development Project

National Natural Science Foundation of China

Hubei Province Central Government Guide Local Science and Technology Development Project

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3