Engine remaining useful life prediction based on PSO optimized multi-layer long short-term memory and multi-source information fusion

Author:

Yuan Wei12,Li Xinlong3ORCID,Gu Hongbin1,Zhang Faye3,Miao Fei2ORCID

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

2. Flying College, Binzhou University, Binzhou, Shandong, China

3. School of Control Science and Engineering, Shandong University, Jinan, Shandong, China

Abstract

Engine as the core component of mechanical equipment, its operating state directly affects whether the equipment can operate normally. Predicting the engine remaining useful life (RUL) can monitor the health of the engine in real time and formulate a timely and reasonable maintenance plan. Aiming at the engine monitoring data with various and long time span, we propose a direct prediction method of engine RUL based on particle swarm optimization (PSO) optimized multi-layer Long Short-Term Memory (LSTM) in this paper. Firstly, the monitoring data that can well reflect the engine degradation trend is screened out, and the samples are constructed through a sliding time window. Then, a multi-layer LSTM model is constructed to mine the deep-seated features of the samples for predicting the engine RUL. Finally, the hyperparameters of the multi-layer LSTM model are optimized automatically by the PSO algorithm to optimize the performance of the model. The effectiveness of this method is verified by NASA data set. RMSE, MAE and the scoring function are used as evaluation indexes. RMSE and score of the prediction results are 12.35 and 284.1, respectively. It has higher prediction accuracy compared with traditional deep learning and machine learning methods.

Funder

National Natural Science Foundation of China

National Key Research and Development Project

Key Research and Development Plan of Shandong Province

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3