Adaptive sliding mode robust control of manipulator driven by tendon-sheath based on HJI theory

Author:

Zhang Shixuan123,Wang Wanqi123,Xu Zhigang12,Shang Dongyang4ORCID,Yin Meng123

Affiliation:

1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China

3. University of Chinese Academy of Sciences, Beijing, China

4. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

The load side and the motor connected by flexible joints in the manipulators’ joint servo system. During the motion of manipulators driven by tendon-sheath, the status change of the end-effector will result in the change of the load side rotational inertia. The perturbation of the inertia of the load side will result in the modeling mismatch of the servo system. So the modeling uncertainty and the system robustness will decrease. An adaptive sliding mode robust control based on HJI (Hamilton-Jacobi-Issacs) theory is proposed in this paper to improve the robustness of the system. Firstly, according to D-H coordinate method, kinematics and dynamics models of the manipulator are established. Then, the basic strategy of adaptive sliding mode robust control is proposed. The variation of control parameters of a single joint of the manipulator is adjusted to reduce the control cost. Next, the sliding mode control law was established through the design of the Lyapunov function based on the HJI theory. The manipulator dynamics model was taken as the research object. The simulation analysis was conducted in uncertain parameters. Finally, a series of manipulator prototype experiments were carried out to proof our control theory. The experiment results show that our method can better solve the model uncertainty caused by the servo system. The adaptive sliding mode robust control strategy based on HJI theory has lower dependence on accurately modeling and stronger robustness.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3