A syntactic dependency method for aspect-level sentiment classification by deep learning

Author:

Chen Siyi1ORCID,Du Xinhao1ORCID,Zhao Ji2,Huang Huixian1,Chen Xiaolong1

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan, China

2. National CIMS Engineering Research Center, Tsinghua University, Beijing, China

Abstract

Most aspect-level sentiment classification networks include the long short-term memory (LSTM) network, coupled with attention mechanism and memory module, is becoming widely applied in aspect-level sentiment classification. Although it has achieved good results, it cannot extract the global and local information of the context at the same time, and it is only based on the semantic relatedness between an aspect and its corresponding context words to model, while neglecting their syntactic dependencies. This paper proposes the aspect-level sentiment classification by combining convolutional neural network (CNN) and proximity-weighted convolution network (PWCN), as well as a new method to calculate the proximity weight. To obtain contextualized word vectors, corpora has been trained by the model of bidirectional encoder representations from transformers (BERT), which can be taken as text features. The CNN is able to extract sequence features from the text and to take the sequence information from the text into account. In addition, the PWCN can consider the syntactic dependencies inside the sentences. The BERT model also has the ability to model complex features of words, such as their syntactic and semantic changes in a linguistic context. Experiments conducted on the SemEval 2014 benchmark demonstrate compared to the well-established ones, the proposed approach had bigger effectiveness.

Funder

National Key Research and Development Project

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3