Affiliation:
1. School of Mechanical and Electrical Engineering, Central South University, Changsha, China
Abstract
In this paper, a continuously variable stiffness control strategy for shaft-hole assembly with a compliant wrist is proposed. The compliant wrist adjusts stiffness by changing the cantilever length of a super-elastic Ni-Ti wire. Its core idea is that when the contact force of the robot exceeds a particular value, the wrist adjusts the stiffness and can deform in a specific direction that guarantees assembly, allows a relatively significant misalignment, and produces a small force. The advantage of the proposed strategy is that the shaft-hole assembly status is supervised by calculating the deformation of compliant wrist based on contact force information, this significantly decrease the requirements of shaft-hole alignment accuracy. On this basis, the kinetostatic coupling kinematic and static force model is built and the fuzzy PD stiffness control strategy is designed to realize the desired stiffness of the wrist in various directions. Finally, the shaft-hole assembly experiments under different misalignment error demonstrates the reliability of the wrist, indicating the efficacy of the control method.
Funder
National Key R&D Program of China
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献