Composite control for disturbed direct-driven surface-mounted permanent magnet synchronous generator with model prediction strategy

Author:

Shi Hong-Jun1ORCID,Nie Xu-Chen23ORCID

Affiliation:

1. Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

2. Institute for Advanced Interdisciplinary Research, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

Abstract

In order to obtain the best power in the wind energy conversion system (WECS) of the direct-driven surface-mounted permanent magnet synchronous generator (SPMSG), active disturbance rejection control (ADRC) is introduced to track the motor speed in real time. The control algorithm provides a new design concept and an inherent robust controller component that requires very little system information. Aiming at the problem of system parameter mutation caused by internal factors and external environment changes, an adaptive controller with multi parameter identification is designed, and the disturbance caused by parameter changes is compensated in real time. The model predictive current control (MPC) technology for the sudden change of external environment is designed to accelerate the response speed of the current loop, so as to weaken the estimation of the current disturbance by the active disturbance rejection controller, and make the speed estimation more accurate. Simulation results show that the proposed control strategy is effective and satisfactory.

Funder

The Faculty Startup Fund for Scientific Research by Nanjing University of Aeronautics and Astronautics

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3