Time-varying disturbance observer based on regulating boundary layer thickness sliding mode control for microelectromechanical systems gyroscope

Author:

Giap Van Nam1,Vu Hong-Son2,Huang Shyh-Chour3ORCID

Affiliation:

1. School of Electrical Electronic Engineering, Hanoi University of Science and Technology, Ha Noi, Viet Nam

2. Faculty of Electronics and Electrical Engineering, Hung Yen University of Technology and Education, Hung Yen, Viet Nam

3. Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

Abstract

This paper presents a robust control methodology for a microelectromechanical systems gyroscope, which named time-varying disturbance observer based on regulating boundary layer thickness sliding mode control First, the micro electromechanical systems gyroscope mathematical model has been analyzed. Second, time-varying disturbance observer (T-V DOBs) was constructed for observing the unwanted signals from inside and outside of the system, which is well known as disturbance and uncertainty estimation. The time-varying disturbance observer has been constructed based on the basic nonlinear disturbance observer, the estimated disturbance has been used to compensate the outside disturbance and inside uncertainty. Third, the proportional integral derivative sliding mode surface was used to construct the equivalent control, afterward the switching control value of sliding mode control was selected following the regulating boundary layer thickness by using the fuzzy logic control to construct the switching boundary thickness. The simulation results has been archived by using MATLAB software. The chattering was significant goes to zero, and disturbance was mostly rejected. The convergence condition was proved based on the Lyapunov law.

Funder

Ministry of Science and Technology of the Republic of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3