Compensation control strategy of hybrid driven three-dimensional elliptical vibration assisted cutting system based on piezoelectric hysteresis model

Author:

Lu Mingming1,Liu Yuyang1,Fu Xifeng1,Lin Jieqiong1,Zhou Jiakang2ORCID,Du Yongsheng1,Hao Zhaopeng1

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, Changchun, China

2. School of Machinery and Automation, Weifang University, Weifang, China

Abstract

Three-dimensional elliptical vibration assisted cutting (3D-EVC) technology has been widely used in many high-precision technical fields due to its high-efficiency processing characteristics. However, the hysteresis and nonlinearity caused by the piezoelectric drive in the 3D-EVC system will impact the system control accuracy. This paper mainly studies the hysteresis and nonlinearity of the system, the feedforward-gray predicted fuzzy PID compound controller based on the generalized Bouc-Wen hysteresis nonlinear model and it is designed to realize the hysteresis compensation of the system. In this paper, input voltage and output displacement are represented by a mathematical relationship, and this relationship of the 3D-EVC system will be described by the generalized Bouc-Wen model. The improved flower pollination algorithm (IFPASO) is adopted in the identification process of parameters. A compound control strategy is formed based on traditional feed-forward control combined with fuzzy PID feedback control to compensate for hysteresis and nonlinearity, and an improved gray prediction model is introduced into the feedback loop. The 3D-EVC system tracking experiment verifies the effectiveness of the designed compound controller. Experiments have proved that the hysteresis component of the system is significantly reduced after the use of the compound controller for hysteresis compensation, and the system has a higher degree of stability.

Funder

Micro-Nano and Ultra-Precision Key Laboratory of Jilin Province

Natural Science Foundation of Jilin Province

Science and Technology Bureau Key Research and Development Projects ofChangchun

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3