Anisotropic neighborhood searching for point cloud with sharp feature

Author:

Yuan Xiaocui1ORCID,Liu Baoling1,Ma Yongli1

Affiliation:

1. Nanchang Institute of Technology, Nanchang, China

Abstract

The k-nearest neighborhoods (kNN) of feature points of complex surface model are usually isotropic, which may lead to sharp feature blurring during data processing, such as noise removal and surface reconstruction. To address this issue, a new method was proposed to search the anisotropic neighborhood for point cloud with sharp feature. Constructing KD tree and calculating kNN for point cloud data, the principal component analysis method was employed to detect feature points and estimate normal vectors of points. Moreover, improved bilateral normal filter was used to refine the normal vector of feature point to obtain more accurate normal vector. The isotropic kNN of feature point were segmented by mapping the kNN into Gaussian sphere to form different data-clusters, with the hierarchical clustering method used to separate the data in Gaussian sphere into different clusters. The optimal anisotropic neighborhoods of feature point corresponded to the cluster data with the maximum point number. To validate the effectiveness of our method, the anisotropic neighbors are applied to point data processing, such as normal estimation and point cloud denoising. Experimental results demonstrate that the proposed algorithm in the work is more time-consuming, but provides a more accurate result for point cloud processing by comparing with other kNN searching methods. The anisotropic neighborhood searched by our method can be used to normal estimation, denoising, surface fitting and reconstruction et al. for point cloud with sharp feature, and our method can provide more accurate result comparing with isotropic neighborhood.

Funder

education department of jiangxi province

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3