Optimal control technique applied to the minimization of uncertainty measurements in surveying instruments

Author:

Feumo Achille Germain1ORCID,Wounba Jean François2,Talla André3,Tueguem S Gervis Roméo4

Affiliation:

1. Department of Mathematics, University of Yaounde I, Yaounde, Cameroon

2. Department of Civil Engineering, University of Yaounde I, Yaounde, Cameroon

3. Department of Mechanic, University of Yaounde I, Yaounde, Cameroon

4. Department of Physic, University of Yaounde I, Yaounde, Cameroon

Abstract

The objective of this study was to develop an optimal control approach by numerical calculus to predict how to reduce the overall uncertainty of survey instruments unable to directly measure inaccessible points. To reach our goal, two approaches were used to attain the objective. The first was inspired by mathematical models related to three methods appropriately selected and contained in Zhuo’s work proposed in 2012. These were Remote Elevation Measurement (REM), Remote Elevation Dual Measurement (REDM), and Front-to-Back Measurement (FBM) methods whose uncertainties on the measurements of points were deduced using error propagation equations. Optimal control technique helps us to show that for the REM, the height h of the prism contributed more than 70% compared to the global uncertainty for ranges [Formula: see text] from the prism. For the REDM, when the distance between two consecutive stations increases, the weight of the contribution of the two zenith angles [Formula: see text] and [Formula: see text] tends to 50% each for [Formula: see text] close to [Formula: see text], which is to be avoided. For the FBM, the weight of the contribution during the front measurement process before is negligible. The second approach used the Swedish regulation of SIS-TS 21143:2009 which classified total stations according to types of uncertainty to compare the results given by the total station of class T3 unable to directly measure inaccessible points with the more sophisticated class T1 station with direct measurements. Thus, for small spans at the rear measurements [Formula: see text], the height [Formula: see text] of the front prism has the greatest relative contribution more than 90% for zenithal differences [Formula: see text]. This results of our analysis were convincing and provided designers with the data to minimize the overall uncertainties essential in the conception of total stations.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3