Prediction of queuing length at metering roundabout using adaptive neuro fuzzy inference system

Author:

An Hong Ki1ORCID,Abdalla Ahmed N2ORCID

Affiliation:

1. Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huai’an, China

2. Faculty of Electronic and Information Engineering, Huaiyin Institute of Technology, Huai’an, China

Abstract

A metering roundabout where traffic is controlled by signals where phase times are influenced by queue detector occupancy may be the solution to reduce queue lengths under unbalanced traffic flows. In the past decades, a number of studies have attempted to evaluate the effectiveness of metering roundabout, especially on the dominant approach. Little studies, however, have been directed on prediction of the queuing lengths, which is essential to determine the detector locations. This paper introduces a queue length estimation model using adaptive neuro fuzzy inference system for unbalanced roundabout traffic flows. The adaptive neuro fuzzy inference system model consists of an input layer representing four parameters as arrival volumes, conflicting volumes, phase green and red time, and output layer with four neuron representing queuing length. MATLAB software and additional statistical tests were used as the tool to develop the models for the data. In order to conduct credible model validations, model output data were compared against the observed data collected using drones. The results from the analysis demonstrated that adaptive neuro fuzzy inference system model is able to estimate the queuing length at metering roundabouts. Thus, it is expected that the adaptive neuro fuzzy inference system model will help practitioners in determining optimal detector locations and will be a foundation research for roundabouts with signals.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3