Optimized dosage control of the ozonation process in drinking water treatment

Author:

Niu Dan1ORCID,Wang Xiaojun1,Chen Xisong1,Ding Li1,Yang Jun1,Jiang Fuchun2

Affiliation:

1. School of Automation, Southeast University, Nanjing, China

2. Xiangcheng Water Treatment Plant, Suzhou Running-Water Company, Suzhou, China

Abstract

Ozonation is an important process in drinking water treatment. Determination of optimal ozonation dose is of significant importance for enhancing the quality of treated water and reducing the energy cost. It is known that keeping the dissolved ozone residual constant is an effective and reliable dosage control scheme. However, some external disturbances, such as large changes in raw water quality and water flow rate, always exist in the ozonation process. Meanwhile, the ozonation is a nonlinear process with large time constant and long time delay. Thus, it has been always a challenge for dosage control to maintain the dissolved ozone residual constant. The traditional control strategies such as PID and MPC merely utilize feedback regulation to suppress disturbances. This will degrade the control performance when strong disturbances occur. In this work, an effective control method integrating MPC method with disturbance observer (DO) is put forward to improve disturbance suppression performance. DO is utilized to estimate the disturbances and uncertainties, and then the estimated values are employed to conduct feed-forward compensation. The test results indicate that significant disturbance suppression improvements can be accomplished under the proposed method in comparison with the conventional MPC method in the ozonation process.

Funder

suzhou key industrial technology innovation project

jiangsu provincial key research and development program

Zhishan Youth Scholar Program of SEU

national key research and development program of china

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3