Partial discharge feature extraction based on synchrosqueezed windowed Fourier transform and multi-scale dispersion entropy

Author:

Wenbo Wang12ORCID,Lin Sun3,Bin Wang4,Min Yu1

Affiliation:

1. School of Science, Wuhan University of Science Technology, Wuhan, China

2. National Engineering Research Center for Water Transport Safety, Wuhan, China

3. School of Artificial Intelligence, Wuchang University of Technology, Wuhan, China

4. Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan, China

Abstract

The recognition of partial discharge mode is an important indicator of the insulation condition in transformers, based on which maintenance can be arranged. Discharge feature extraction is the key to recognize discharge mode. To solve the problem of poor stability and low recognition rate of partial discharge mode, this paper proposes a feature extraction method based on synchrosqueezed windowed Fourier transform and multi-scale dispersion entropy. First, the four partial discharge signals collected under laboratory conditions are decomposed by synchrosqueezed windowed Fourier transform, then a number of band-limited intrinsic mode type functions are obtained, and the original feature quantities of partial discharge signals are obtained by calculating the multi-scale dispersion entropies of each intrinsic mode type function. Based on that, original feature quantity is optimized by using the maximum relevance and minimum redundancy criteria. Finally, the classification is implemented by the support vector machine. Experimental results show that in the case of noise interference, the proposed synchrosqueezed windowed Fourier transform–multi-scale dispersion entropy method can still accurately describe the feature of different discharge signals and has a higher recognition rate than both the empirical mode decomposition–multi-scale dispersion entropy method and the direct multi-scale dispersion entropy method.

Funder

national natural science foundation of china-guangdong joint fund

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3