An improved faster RCNN-based weld ultrasonic atlas defect detection method

Author:

Chen Changhong1ORCID,Wang Shaofeng1,Huang Shunzhou2

Affiliation:

1. Inner Mongolia Key Laboratory of Intelligent Diagnosis and Control of Mechatronic Systems, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Province, China

2. Shanghai Aerospace Equipment Manufacturer Co, Ltd, Shanghai, China

Abstract

In view of the complex multi-scale target detection environment of ultrasonic atlas of weld defect and the poor detection performance of existing algorithms for the multiple small target defects, the Faster RCNN convolution neural network is applied to weld defect detection, and a Fast RCNN deep learning network is proposed in combination with an improved ResNet 50. Based on the coexistence of multiple small targets and multi-scale target detection, this paper proposes to combine deformable network, FPN network and ResNet50 to improve the detection performance of the algorithm for multi-scale targets, especially small targets. Based on the efficiency and accuracy of candidate frame selection, K-means clustering algorithm and ROI Align algorithm are proposed, and the anchors points and candidate frames suitable for weld defect data sets are customized for accurate positioning. Through the self-made ultrasonic atlas data set of weld defects and experimental verification of the improved algorithm in this paper, the overall mean average precision has reaches 93.72%, and the average precision of small target defects such as “stoma” and “crack” has reaches 92.5% and 88.9% respectively, which is 4.8% higher than the original Faster RCNN algorithm. At the same time, through the ablation experiments and comparison experiments with other mainstream target detection algorithms, it is proved that the improved method proposed in this paper improves the detection performance and is superior to other algorithms. The actual industrial detection scene proves that it basically meets the requirements of weld defect detection, and can provide a reference for the intelligent detection method of weld defects.

Funder

Young Science and Technology Talents Support Plan Project of Inner Mongolia

Science and Technology Plan Project of Inner Mongolia

National Natural Science Foundation of China

Technical Basic Research Project of National Defense Science and Industry Bureau

Natural Science Foundation of Inner Mongolia

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3