Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network

Author:

Wang Yuqiang12ORCID

Affiliation:

1. China Academy of Railway Sciences Corporation Limited, Beijing, China Railway Train Working Diagram Technology Center, Beijing, China

2. China Academy of Railway Sciences Corporation Limited, Beijing, Transportation and Economics Research Institute, Beijing, China

Abstract

Considering the real scenario in China, in order to decrease passenger transfer, cross-line trains are scheduled extensively for the large number of cross-line passenger flow. Therefore, in this paper, we propose a more practical approach aiming to schedule more trains within a limit time horizon by both main-line train and cross-line train scheduling optimization (train timetable and stopping plan optimization). We find that the train scheduling and passenger assignment problems are multi-commodity flow problems. The trains (as the users) share the railway capacities (as the resource) in a high-speed railway network, and the passengers (as the users) share the train carrying capacities (as the resource). Thus, based on this, we formulate two space–time networks—train and passenger space–time networks—to present the train operation and the passenger flow, respectively. In addition, we regard train disturbances in different directions as different train headways at cross-line stations to optimize train scheduling practically. Sequentially, a mixed-integer linear programing model with headway and coupling constraints is formulated. To solve the model efficiently for a large-scale application, we decompose the problem into two space–time path-searching sub-problems based on the passenger and train space–time networks by the Lagrangian relaxation and alternating direction method of multipliers decomposition methods. Finally, we adopt the Taiyuan–Dezhou and Zhengzhou–Beijing high-speed railway networks in a practical experiment, and an experiment without cross-line operation is designed to test the effect of cross-line operation. The results show the proposed approach can obtain a no-conflict timetable and all the passenger demand can be satisfied, meanwhile, the capacity can improve 20.7% when the cross-line operation is not considered.

Funder

National Natural Science Foundation of China

Systematic Major Research Project of China Railway

China Academy of Railway Sciences

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3