Affiliation:
1. Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, R.O.C.
Abstract
This paper presents the disturbance and uncertainty suppression by using the nonlinear disturbance observer and an extended state observer for a nonlinear active magnetic bearing system. Otherwise, the chattering free is assured by a fuzzy controller, where the fixed sliding mode surface boundary is regulated by fuzzy boundary layer. The stability of the system is guaranteed by Lyapunov condition. First, the nonlinear disturbance observer is presented to estimate the disturbance from outside of the system. Second, the system parameter variations are estimated by an extended state observer with the construction via the estimated disturbance value. Third, the proportional–integral–derivative sliding mode surface has been constructed due to the chattering values that appear from the high-frequency switching control values. Fourth, these chattering values are reduced by using a Mamdani fuzzy logic control. The proposed control methodology was given by the MATLAB simulation. The overshoot value that is equal to zero, narrow settling time, and the average distance tracking error value which is quite small are archived.
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献