Affiliation:
1. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
Abstract
In response to the influence of motor interference, damping, friction, and other uncertain factors on the operation of electric power steering systems under extreme working conditions, this study proposes a control strategy for electric power steering systems based on an active disturbance rejection algorithm. In ADRC, the fastest tracking differentiator is used to arrange the transition process for the target signal, and the extended state observer compensates for the total disturbance in the system. Phase compensation has been performed on the monitoring torque by using the torque differentiation method. The Simulink/Carsim simulation results show that ADRC has significantly improved anti-disturbance performance compared to PID and fuzzy PID. When using ADRC, the tracking accuracy of the assisted current is enhanced by 45.8%–75.8%, and the current adjustment time is reduced by 35.6%–61.7%. After phase compensation, the monitoring torque overshoot is reduced by 83.3%. Therefore, the proposed control strategy improves EPS’s robustness and steering feel.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献