On disturbance rejection control for inertial stabilization of long-distance laser positioning with movable platform

Author:

Deng Jiuqiang123,Xue Wenchao34,Zhou Xi12,Mao Yao123ORCID

Affiliation:

1. Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu, China

2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China

3. University of Chinese Academy of Sciences, Beijing, China

4. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

Abstract

This paper focuses on the disturbance rejection control problem for inertial stabilization of long-distance laser positioning with the movable platform. Due to various disturbances of the movable platform, the positioning system has significant disturbances that affect the positioning accuracy. Moreover, the nonminimum-phase property of the inertial stabilization system leads to great challenges for designing traditional disturbance-observer-based as well as rejection control methods. In this paper, a dual-compensator disturbance-observer-based control algorithm is proposed to ensure a much stronger rejection of disturbances than those of conventional methods. In particular, it is proven that the two compensators in the proposed method effectively estimate disturbances in different frequency regions. Furthermore, the analytical tuning laws for the proposed dual-compensator disturbance-observer-based control method are presented. The experimental setup including the laser positioning platform demonstrated the validity of the proposed method, which effectively rejected various disturbances.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3