Backstepping controller for laser ray tracking of a target mobile robot

Author:

Ling Yun1,Wu Jian1,Lyu ZhanQiang1,Xiong Pengwen2ORCID

Affiliation:

1. Robotics Laboratory, Nanjing Research Institute of Simulation Technology, Nanjing, China

2. School of Information Engineering, Nanchang University, Nanchang, China

Abstract

Tracking control, which is applied to the target mobile robots in the process of rushing toward the trainees, is one of the critical technologies in the advancement of anti-terrorist training. Considering the disadvantages of various types of traditional tracking methods, this paper proposes a novel laser ray tracking mechanism and a backstepping controller for the target mobile robot that is used in shooting ranges. The mechanism and principle of the laser ray tracking is illustrated in detail. Based on the unique structure, the light intensity distributions are measured to further locate the laser spots on the cut-ray boards. Then, the relationship between the positions of the laser spots on the cut-ray boards and the pose of the target mobile robot is demonstrated. According to the features of the tracking situation, a backstepping controller is designed to achieve the laser ray tracking. After that, the inverse kinematics of the wheeled skid-steering mobile robot is analyzed to map the linear and angular velocities of the robot to the velocities of its left wheels and right wheels. The conventional proportional–integral–derivative controller is applied in the experiments to compare with the proposed backstepping controller. The experimental results show that the proposed controller is more robust, and converges faster for the laser ray tracking.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3