Wind farm control and power curve optimization using induction-based wake model

Author:

Jahantigh Reza1,Esmailifar Sayyed Majid1,Sina Seyyed Ali2ORCID

Affiliation:

1. School of Mechanical, Aerospace and Marine Engineering, Amirkabir University of Technology, Tehran, Iran

2. Department of Mechanics, Shahrood University of Technology, Shahrood, Iran

Abstract

This paper proposes a control strategy to achieve minimum wake-induced power losses in a wind farm. At first, the axial-induction-based wake model is developed to consider the aerodynamic wake interactions among wind turbines. To optimize the generated power of the whole wind farm, the axial induction factor of each wind turbine is calculated by the genetic algorithm. As a supervisory controller, each wind turbine’s optimal axial induction factor calculated by the genetic algorithm is implemented as a setpoint of each wind turbine’s internal controller. In the internal control loop, a comprehensive controller is designed to track the commanded axial induction factor. In the partial load region, the commanded axial induction factor was attained by tuning the generator torque. In the transient and full load regions, the blade pitch angle is tuned to keep the generator speed and torque at the rated values. The performance of the proposed control strategy is investigated through case studies, including three different wind speeds and a time-varying wind speed case in a 3 × 3 wind-farm layout. The simulation results show the satisfactory performance of the proposed approach.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Reference43 articles.

1. Active Power Control for Wind Farms Using Distributed Model Predictive Control and Nearest Neighbor Communication

2. Scholbrock AK. Optimizing wind farm control strategies to minimize wake loss effects. ProQuest, https://www.proquest.com/openview/735877dd8ac8c2eb0f49342cc3609a60/1?pq-origsite=gscholar&cbl=18750 (2011, accessed 10 November 2021).

3. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3