Modal shape measurement of fiber-reinforced composite plate with high efficiency and precision based on laser linear scanning method

Author:

Li Hui1ORCID,Chang Yongle1,Xu Zhonghao1,Zhu Qingyu1,Wen Bangchun1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

The laser linear scanning method is proposed to measure the modal shape of fiber-reinforced composite thin plate with high efficiency and precision. First, by establishing the laser scanning frame model of the composite plate, the corresponding extraction principle of modal shape data and laser scanning rate selection criterion are explained in detail to clarify the theoretical principle of laser linear scanning method. The corresponding test procedure of modal shape, drawing method from the shape scanning data, and control method of the constant laser scanning rate are also proposed based on the developed laser linear scanning system. Then, a TC300 carbon fiber/resin composite thin plate is taken as a research object to verify the effectiveness and reliability of such a method, through comparing the results obtained by the traditional experimental modal method and finite element method. Moreover, the influences of constraint boundary condition, excitation level, laser scanning rate, scanning spacing, scanning path mode, the fiber angles, and fiber material damage on modal shape results are also discussed. It has been found that laser linear scanning method can improve test efficiency of modal shape of the composite plate with high preciseness. Except for scanning path mode, the other parameters have a major impact on each shape morphology, and their effects can be quantitatively analyzed by identifying the positions and clarity of nodal lines of each modal shape. Especially, the high-density modal shape results and their equal amplitude lines in different projection views can be used to determine whether or not the composite plate is damaged as well as its damaged degrees.

Funder

Scholarship Fund of China Scholarship Council

The Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3