Research on path planning of tea picking robot based on ant colony algorithm

Author:

Wu Minghui1,Gao Bo1ORCID,Hu Heping1,Hong Konglin1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China

Abstract

Robot tea picking is an inevitable trend to solve the problem of tea picking, and the picking path planning is directly related to the robot picking efficiency. An Improved Ant Colony Algorithm (IACA) is proposed, which firstly introduces the adaptive adjustment mechanism into the pheromone volatilization factor of the ant colony algorithm, and then sets the pheromone volatilization factor with a high initial value to improve the searching speed, and then adjusts the size of its value within a certain range in real time according to the iterative results, and finally solves the problem that the searching of the ant colony algorithm is prone to fall into the local optimal solution. On the basis of visual recognition of tea leaves and obtaining coordinate information, the improved ant colony algorithm is used to enter the path planning simulation experiments, and the planning results of the other six algorithms are compared with the similar algorithms and dissimilar algorithms, and the experimental results indicate that the IACA method has improved the shortest path index by 5% compared to the basic ant colony algorithm, and by an average of 4% compared to similar improved ant colony algorithms. In comparison to different optimization algorithms, the enhancement has an average increase of 6%; Furthermore, the convergence speed has been improved by 60% compared to six other methods. The standard deviation of repeated experimental results is 50% lower than the other six methods. The gap between the results of multiple repeated experiments is small, the degree of fluctuation is low, and the calculation results are more stable, which verifies the superiority of IACA method. Therefore, the improvement of the ant colony algorithm makes the pheromone concentration value with adaptive adjustment ability, which reflects good effects in path optimization, convergence speed improvement, stability of results, etc., and has good application value for the path planning problems such as tea picking, which has complex paths and large computational volume.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3