Divergent instability control of aeroelastic system driven by aerodynamic forces under disturbance based on discrete sliding mode control algorithms

Author:

Liu Ting-Rui1ORCID

Affiliation:

1. College of Mechanical & Electronic Engineering, Shandong University of Science & Technology, Qingdao, China

Abstract

Divergent instability control of 2D pretwisted blade section of wind turbine driven by aerodynamic forces under disturbance is investigated. Realization of divergent instability control is based on two types of discrete sliding mode control algorithms. The structure is modeled as 2D pretwisted blade section integrated with structural damping, which is driven by aerodynamic model with perturbed disturbance. Discrete sliding mode control algorithm suitable for disturbance control is investigated to control divergent flap/lead-lag vibrations of blade section. To increase convergence performance and reduce the chattering phenomenon, discrete sliding mode control based on disturbance observer is applied. Convergence of disturbance observer is analyzed, and stability of closed-loop system is discussed. The simulation results show that not only the convergence accuracy can be improved by sliding mode control based on disturbance observer controller, but also the displacement chattering and the control input chattering can be effectively eliminated. Compared with conventional discrete sliding mode control, it has more advantages in the control of divergent instability. To facilitate the real-time realization and automation and at the same time to ensure accuracy, a design of quadratic feedback to build the performance control matrix in sliding mode control based on disturbance observer is developed in present study.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete-Time Sliding Mode Control with Disturbance Observer Compensation for Electromechanical Servo;2023 26th International Conference on Electrical Machines and Systems (ICEMS);2023-11-05

2. Nonlinear disturbance observer-based control of a structural dynamic model of a twin-tailed fighter aircraft;Nonlinear Dynamics;2022-01-24

3. Aeroelastic vibration analysis of wind turbine blade with Gurney flap;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3