Composite fault feature extraction for gears based on MCKD-EWT adaptive wavelet threshold noise reduction

Author:

LV Yanchang1,Wang Jingyue12ORCID,Zhang Chengqiang1,Ding Jianming2

Affiliation:

1. School of Automobile and Transportation, Shenyang Ligong University, Shenyang, China

2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

Abstract

For the strong noise gear fault vibration signal is relatively weak, and the transmission path is complex and variable, in the case of composite faults, the modulation of different fault characteristics of the frequency, coupling, resulting in the actual acquisition of the fault characteristics are difficult to extract and separate. Aiming at fault feature extraction and separation, an adaptive threshold denoising fault detection method based on Maximum correlated kurtosis deconvolution (MCKD) and Empirical wavelet transform (EWT) is proposed. Firstly, envelope entropy and information entropy are used as fitness functions, and the parameters of the MCKD algorithm are optimized by the improved particle swarm algorithm, then the empirical wavelet decomposition is carried out on the signals, and finally adaptive wavelet threshold denoising is carried out on the decomposed Intrinsic mode functions (IMFs) components. The results of experimental data analysis show that compared with the feature extraction methods such as spatial scale threshold EWT-MCKD and Complete Ensemble Empirical Mode Decomposition (CEEMDAN)-MCKD, the proposed method is more suitable for the diagnosis of gear composite faults in a strong background noise environment, the noise interference is effectively suppressed, and the extraction effect of gear composite fault features is more obvious.

Funder

Natutal Science Foundation of Liaoning Province of China

Liaoning BaiQianWan Talents Program

State Key Laboratory of Traction Power

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3