A study on structure improvement scheme of electromagnetic flow sensor for slurry flow measurement

Author:

Gao Song1ORCID,Ma Hao1ORCID

Affiliation:

1. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China

Abstract

A scheme to improve the structure of electromagnetic flow sensor is put forward in this paper, which can effectively solve the slurry noise problem when electromagnetic flowmeter measures slurry fluid. The electromagnetic flow sensor used for measuring slurry fluid has slurry noise interference in the measurement signal. At present, the method of increasing the excitation frequency of electromagnetic flow sensor is widely used to overcome slurry noise. However, high excitation frequency will lead to poor stability of zero point. In view of the shortcomings of existing methods, this paper studies the method of improving sensor structure to overcome slurry noise. Firstly, according to the mechanism of slurry noise, an improved scheme for the installation position of the measuring electrode of electromagnetic flow sensor is proposed, which can greatly reduce the probability of solid particles of slurry fluid colliding with the measuring electrode; Then, the relevant research results of bubble dynamics theory are applied to optimize the improvement scheme, and the improvement scheme is determined, through calibration, it is concluded that the improved sensor can reach the accuracy level of 1.0; Finally, through slurry measurement experiments, it is verified that the improved electromagnetic flow sensor can effectively overcome slurry noise.

Funder

The national natural science foundation of China under Grant

The key scientific research projects in Henan colleges and Universities

Henan Province Key Research and Development and Promotion Special

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on optimization technology of excitation coil in downhole annular flow electromagnetic measurement system;Measurement Science and Technology;2023-12-27

2. New Measurement Method of Oil-Water Two-Phase Flow with High Water Holdup and Low Rate by Phase State Regulation;Measurement Science Review;2023-11-17

3. Magnetic circuit of the electromagnetic flow meter;2023 24th International Conference on Computational Problems of Electrical Engineering (CPEE);2023-09-10

4. On the effect of the electrode shape and contraction section on the right-angled electromagnetic flowmeter;Flow Measurement and Instrumentation;2023-08

5. Optimization of Electromagnetic Flowmeter Excitation Field;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3