The Single-channel blind source separation based on VMD and Tukey M estimation for rolling bearing composite fault diagnosis

Author:

Wang Yaping12,Zhang Qisong2,Cao Ruofan2ORCID,Zhang Sheng2,Li Shisong2,Xu Di2

Affiliation:

1. Key Laboratory of Advanced Manufacturing Intelligent Technology of Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang Province, China

2. School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang Province, China

Abstract

Rolling bearing is one of the core components in rotating machinery, and its running status directly affects the operation of the whole equipment. Faults of rolling bearings in the actual working process are often multiple faults. To effectively separate fault sources, the blind source separation method is used for the compound fault diagnosis of rolling bearings. Because of the impact of the number of artificially limited decompositions and quadratic penalty factor on VMD in the decomposition process, and the slow convergence and low accuracy in the objective function of traditional FastICA operation, the VMD algorithm based on the energy loss coefficient and the information entropy is proposed, which adaptively determines the number of modal components and the quadratic penalty factor; The Tukey M estimation is selected as the objective convergence function of the FastICA algorithm to improve its robustness. First, VMD is used to decompose the signal; Secondly, the original signal and the decomposed IMF component are reconstructed, the covariance matrix and the singular value decomposition are constructed, the number of fault sources is estimated by the proximity dominance method, and the decomposed IMF components are filtered through correlation analysis and kurtosis index to build a multi-channel feature set; Finally, the constructed multi-channel feature set is input to the FastICA algorithm based on the Tukey M estimation for the separation of fault source signals to achieve composite fault diagnosis. The compound fault experiment shows that the proposed method in this paper can effectively realize the blind source separation of rolling bearing fault features to realize the compound fault diagnosis in different positions.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3