The primary frequency modulation control strategy based on fuzzy active disturbance rejection control for gas turbines

Author:

Cui Xiaobo1ORCID,Xu Pan2,Gu Hui1,Wang Liang1,Xiong Xiaohe3,Tan Houzhang3

Affiliation:

1. School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu, China

2. School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China

3. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

Gas turbines play a core role in clean energy supply and construction of comprehensive energy system, and the control performance of primary frequency modulation (PFM) of gas turbine has a great impact on the frequency control of the power grid. However, there are some control difficulties in the PFM control of gas turbines, such as the coupling effect of fuel control loop and speed control loop, slow tracking speed and large variation of operating conditions. To relieve the above difficulties, a control strategy based on the fuzzy-modified active disturbance rejection control (F-MADRC) proposed in this paper. Based on the analyses of the parameter stability region for active disturbance rejection control (ADRC), fuzzy tuning rules of parameters for F-MADRC are designed. Finally, the proposed F-MADRC is applied to the PFM system of MS6001B heavy-duty gas turbine. The simulation results show that the gas turbine unit with the proposed method can obtain the best control performance of the PFM with strong ability to deal with system uncertainties. The proposed method shows good engineering application potential.

Publisher

SAGE Publications

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3