Effect of wind disturbance on the aerodynamic performance of coaxial rotors during hovering

Author:

Lei Yao12ORCID,Lin Rongzhao1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, P.R. China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, Fuzhou, P.R. China

Abstract

The ability to resist the effect of wind disturbance is vital for micro air vehicles. As the most compact rotor configuration for micro air vehicles, coaxial rotors will be the preferred choice for this type of devices. In this paper, the aerodynamic performance of the coaxial rotors considering the wind gust is presented with both experiments and simulations. First, effect of wind disturbances on the micro air vehicles flight was introduced. Then, low-speed wind tunnel tests were performed on a coaxial rotor with a spacing 0.39 R to obtain the performance in both horizontal and vertical wind of 0–5 m/s with the revolutions per minute ranging from 1500 to 2400. Finally, computational fluid dynamics simulations, as a means of visualizing the flow field to compensate the intuition of the experimental data, were applied by using the sliding mesh to capture the detailed interference of flow field with the distributions of streamline and velocity vector. Compared with wind tunnel tests, simulation results were highly consistent with experiments that allow to capture the flow details around the rotor tip effectively. In addition, the aerodynamic performance was deteriorated by vortices moving or deforming around the blade tip. Also, coaxial rotors can effectively resist the wind disturbance in the horizontal direction while the rotor performance was found to be declined in the vertical wind.

Funder

China Scholarship Council

National Natural Science Foundation of China

Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3