A MPSC strategy with adjustable C-rate of lithium-ion cell for PMSM driving EV

Author:

Sun Yening1,Wei Yao1ORCID,Wei Yanjun1,Qi Hanhong1,Li Mengyuan1

Affiliation:

1. The College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China

Abstract

Battery is the core equipment of the electrical vehicle (EV), battery life, and performance are critical to EV. Only motor variables are considered in most model predictive control (MPC) strategy in which battery indexes are neglected. A model predictive speed control (MPSC) strategy with adjustable C-rate of battery is proposed in this paper on EV with permanent magnet synchronous machine (PMSM). The rest capacity of battery is involved in the cost function, and the operating speed is related to the rest capacity of battery which adjusts the C-rate of the discharging currents further to protect battery. As the EV runs, the C-rate is decreased step by step according to the improved cost function, and the energy is saved to prolong mileage. The benefits of the proposed method including discharging capacities and operating mileage are corroborated by the simulation and repetitive experimental results under same conditions.

Funder

the Youth Fund Project of Science and Technology Program for Colleges and Universities of Hebei Provincial Education Department

the Key Project of Science and Technology Program for Colleges and Universities of Hebei Provincial Education Department

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3