Temperature control of cryogenic wind tunnel with a modified L1 adaptive output feedback control

Author:

Zhu Rusong1,Yin Guofu1,Chen Zhenhua2,Zhang Shuangxi2,Guo Zili2

Affiliation:

1. School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China

2. China Aerodynamics Research and Development Center, Mianyang, China

Abstract

Background: Temperature is one of the main variables need to be regulated in cryogenic wind tunnel to realize the true flight Reynolds number. A new control methodology based on L1 output feedback adaptive control is deployed in the temperature control. Methods: This design is composed of three parts: linear quadratic Gaussian baseline control, L1 adaptive control and nonlinear feedforward control. A linear quadratic Gaussian controller is implemented as the baseline controller to provide the basic robustness of temperature control. A L1 output feedback adaptive controller with a modified piecewise constant adaptive law is deployed as an augmentation for the baseline controller to cancel the uncertainties within the actuator’s bandwidth. The modified adaptive law can guarantee better steady-state tracking performance compared with the standard adaptive law. A global nonlinear optimization process is carried out to obtain a suboptimal filter design for the L1 controller to maximize the performance index. The nonlinear feedforward control is to cancel the coupling effects in control of the tunnel. Results: With these design techniques, the augmented L1 adaptive controller improves the performance of the baseline controller in the presence of uncertainties of dynamics. The simulation results and analysis demonstrate the effectiveness of the proposed control architecture. Conclusion: The modification of adaptive law plus the global nonlinear optimization of the filter in the L1 adaptive control architecture helps the controller achieve good control performance and acceptable robustness for the temperature control over a wide range of operations.

Funder

National Science and Technology Support Project, China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3