Pipeline leak detection based on empirical mode decomposition and deep belief network

Author:

Yan Yulin1,Hu Zhiyong2,Yuan Wenqiang2ORCID,Wang Jinyan2

Affiliation:

1. The Shale Oil Plant of Fushun Mining Group Co., Ltd, Fushun, Liaoning, China

2. School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning, China

Abstract

Leak detection of an oil pipeline can prevent environmental and financial losses. A method for the cyber-physical system of pipeline leak detection is proposed based on the empirical mode decomposition (EMD) and deep belief network (DBN). Experiment data are acquired from an oil pipeline company. The EMD is suitable for noise removal and signal reconstruction from raw pressure signals, and the reconstructed signals are used to establish a DBN model of pipeline leakage. Our proposed method obtains higher-recognition-accuracy results (98% accuracy) and can more effectively identify leak detection than the twin support vector machine (TWSVM), support vector machine (SVM), and back-propagation neural network (BPNN).

Funder

General scientific research project of Liaoning Provincial Department of education

Xingliao Talents Program of Liaoning Province

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3