Modal parameters identification of bridge by improved stochastic subspace identification method with Grubbs criterion

Author:

Zhou Yulin1,Jiang Xulei2,Zhang Mingjin2ORCID,Zhang Jinxiang2,Sun Hao3,Li Xin4

Affiliation:

1. Sichuan Yanjiang Panning Expressway CO., LTD., Panzhihua, Sichuan, China

2. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China

3. CCCC Second Highway Consultants CO., LTD., Wuhan, Hubei, China

4. Anhui Urban Construction Design Institute CORP., LTD., Hefei, Anhui, China

Abstract

In the wind tunnel test of a long-span bridge model, to ensure that the dynamic characteristics of the model can satisfy the test design requirements, it is particularly important to accurately identify the modal parameters of the model. First, the stochastic subspace identification algorithm was used to analyze the modal parameters of the model in the wind tunnel test; then, Grubbs criterion was introduced to effectively eliminate outliers in the damping ratio matrix. Stochastic subspace identification algorithm with Grubbs criterion improved the accuracy of the modal parameter identification and the ability to determine system matrix order and prevented the modal omissions caused by determining the stable condition of the damping ratio in the stability diagram. Finally, Oujiang Bridge was used as an example to verify the stochastic subspace identification algorithm with Grubbs criterion and compare with the results of the finite element method. The example shows that the improved method can be effectively applied to the modal parameter identification of bridges.

Funder

national key research and development program of china

fundamental research funds for the central universities

national natural science foundation of china

key research and development program of sichuan province

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3