Flow Measurement by Wavelet Packet Analysis of Sound Emissions

Author:

Göksu Hüseyin1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey

Abstract

Fluid, when running through pipes, makes a complex sound emission whose parameters change nonlinearly with respect to flow speed. Especially, in household pipe systems, there may be spraying effects and resonance effects which make the emission more complex. We present a novel approach for predicting flow speed based on wavelet packet analysis of sound emissions rather than traditional time and frequency domain methods. Wavelet packet analysis, by providing arbitrary time–frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than wavelet analysis. Wavelet packet analysis subimages are further analyzed to obtain feature vectors of norm entropy. These feature vectors are fed into a multilayer perceptron for prediction. Prediction accuracy of 98.62%, with 3.99E−04 L/s mean absolute error and its corresponding 1.85% relative error is achieved. Time sensitivity is ±0.453 s and is open to improvement by varying window width. The result indicates that the proposed method is a good candidate for flow measurement by acoustic analysis.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel flow rate measurement method for fire hose based on vibration signal and neural network;Flow Measurement and Instrumentation;2024-07

2. More Than Noise: Assessing the Viscosity of Food Products Based on Sound Emission;Communications in Computer and Information Science;2024

3. Acoustic Field Imaging of Pipeline Turbulence for Noninvasive and Distributed Gas Flow Measurement;IEEE Sensors Journal;2023-06-15

4. Soft Metrology;Handbook of Metrology and Applications;2023

5. Soft Metrology;Handbook of Metrology and Applications;2022-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3