Decentralized active disturbance rejection control design for the gas turbine

Author:

Shi Gengjin1ORCID,Wu Zhenlong2,He Ting3,Li Donghai1,Ding Yanjun1,Liu Shangming4

Affiliation:

1. State Key Lab of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing, China

2. School of Electrical Engineering, Zhengzhou University, Zhengzhou, China

3. Energy and Electricity Research Center, International Energy College, Jinan University, Zhuhai, China

4. Institute of Gas Turbine, Department of Energy and Power Engineering, Tsinghua University, Beijing, China

Abstract

As a clean energy engine, the gas turbine is widely used for the generation of the power plant and the propulsion of the warship. Its control is becoming more and more challenging for the reason that internal coupling exists and the load command changes frequently and extensively. However, advanced controllers are difficult to implement on the distributed control system and conventional proportional–integral–derivative controllers are unable to handle with aforementioned challenges. To solve this problem, this article designs a decentralized active disturbance rejection control for the power and exhaust temperature of the gas turbine. Simulation results illustrate that the decentralized active disturbance rejection control is able to obtain satisfactory tracking and disturbance rejection performance with strong robustness. Eventually, a numerical simulation is carried out which shows advantages of active disturbance rejection control in the control of power and exhaust temperature when the gas turbine is under variable working condition. This successful application of decentralized active disturbance rejection control to the gas turbine indicates its promising prospect of field tests in future power industry with increasing demand on integrating more renewable energy into the grid.

Funder

National Science and Technology Major Project of China

tsinghua university

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3