Affiliation:
1. Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
2. Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
3. Department of Intelligent Commerce, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
Abstract
The purpose of this research is to develop a high-efficiency, low-cost, and easy-to-use tracking system for vehicles, and it is expected that the system can be extended to areas such as service robots, autonomous driving, and manufacturing. In this paper, we introduced an object detection algorithm based on convolutional neural networks to realize face recognition, which has better efficiency and robustness than traditional machine learning methods. With the concept of edge computing, we deployed the model on the local embedded system to improve the information transmission and security issues of cloud computing. In order to realize the tracking system, this paper builds a mecanum-wheel vehicle with omnidirectional mobility, and proposes a parallel-cascade PID controller architecture based on the mecanum-wheel vehicle. The fixed distance linear tracking control can be realized through the dual-loop feedback control of distance and yaw angle; moreover, the vehicle slipping which is caused by difference rotation speed can be improved. Finally, through algorithm optimization, controller parameter adjustment, and system integration, an omnidirectional mobile vehicle with recognition and tracking functions is realized. The experiment results indicate that the system is stable and robust during actual operation.
Funder
Ministry of Science and Technology
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献