Degradation state identification for hydraulic pumps using modified hierarchical decomposition and image processing

Author:

Pei Mo-chao1,Li Hong-ru1ORCID,Yu He1

Affiliation:

1. Army Engineering University, Shijiazhuang, China

Abstract

Monitoring the degradation state of hydraulic pumps is of great significance to the safe and stable operation of equipment. As an important step, feature extraction has always been challenging. The non-stationary and nonlinear characteristics of vibration signals are likely to weaken the performance of traditional features. The two-dimensional image representation of vibration signals can provide more information for feature extraction, but it is challenging to obtain sufficient information based on small-size images. To solve these problems, a method for feature extraction based on modified hierarchical decomposition (MHD) and image processing is proposed in this paper. First, a set of signals decomposed by MHD are converted into gray-scale images. Second, features from accelerated segment test (FAST) algorithm are applied to detecting the feature points of the gray-scale image. Third, the real part of Gabor filter bank is used to convolve the images, and the responses of feature points are used to calculate histograms that are regarded as feature vectors. The method for feature extraction fully acquires the multi-layered texture information of small-size images and removes the redundant information. Furthermore, support vector machine (SVM) and nondominated sorting genetic algorithm II (NSGA-II) are introduced to conduct feature selection and state identification. NSGA-II and SVM can conduct the joint optimization of these two goals. The details of the proposed method are validated using experimental data, and the results show that the highest recognition rate of our proposed method can reach 100%. The results of the comparison among the proposed method, local binary pattern (LBP), and one-dimensional ternary patterns (1D-TPs) certify the superiorities of the proposed method. It obtains the highest classification accuracy (99.7%–98%) and the lowest feature set dimension (13–10).

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3