Micro-electromechanical system based optimized steering angle estimation mechanism for customized self-driving vehicles

Author:

Butt Muhammad Atif1ORCID,Riaz Faisal1,Khalid Shehzad2,Abid Samia1,Habib Muhammad Asif3,Shafique Sarmad1ORCID,Han Kijun4

Affiliation:

1. Department of Computer Science and Information Technology, Mirpur University of Science and Technology (MUST), Mirpur, AJK Pakistan

2. Department of Computer Engineering, Bahria University, Islamabad, Pakistan

3. Department of Computer Science, National Textile University, Faisalabad, Pakistan

4. School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea

Abstract

In an automated steering system of the self-driving vehicles, the steering wheel angle is measured by the absolute angular displacement sensors or relative angle sensors. However, these sensors either encompass global navigation satellite systems (GNSS)/gyroscope – Micro Electromechanical-Sensor (MEMS) based solutions or comprise of the complex gear-based mechanical structure which results in latency and additive bias in the accumulative steering angle assessment. To address these issues, we propose a novel steering angle assessment system based on enhanced gear mechanism along with the adapted rotation paradigm for the customized self-driving vehicles. Additionally, a digital signal processing system has been introduced to resolve the issues in the identification of absolute central and max-bounding steering wheels position in self-driving vehicles. In assistance with the proposed mechanism, an algorithm has also been proposed to optimize the computed steering angle to minimalize the effect of additive bias in the accuracy. The proposed mechanism has been installed in the customized self-driving testbed vehicle and rigor validation has been performed in the straight and curvy road scenarios. Finally, the comparison study has been carried out between the conventional relative sensor and the proposed mechanism to show the accuracy and effectiveness of the proposed mechanism in terms of error rate, stability, and deviation.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3