SF-YOLOv5: Improved YOLOv5 with swin transformer and fusion-concat method for multi-UAV detection

Author:

Ma Jun1ORCID,Wang Xiao1ORCID,Xu Cuifeng1,Ling Jing1

Affiliation:

1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China

Abstract

When dealing with complex trajectories, and the interference by the unmanned aerial vehicle (UAV) itself or other flying objects, the traditional detecting methods based on YOLOv5 network mainly focus on one UAV and difficult to detect the multi-UAV effectively. In order to improve the detection method, a novel algorithm combined with swin transformer blocks and a fusion-concat method based on YOLOv5 network, so called SF-YOLOv5, is proposed. Furthermore, by using the distance intersection over union and non-maximum suppression (DIoU-NMS) as post-processing method, the proposed network can remove redundant detection boxes and improve the efficiency of the multi-UAV detection. Experimental results verify the feasibility and effectiveness of the proposed network, and show that the mAP trained on the two datasets used in experiments has been improved by 2.5 and 4.11% respectively. The proposed network can detect multi-UAV while ensuring accuracy and speed, and can be effectively used in the field of UAV monitoring or other types of multi-object detection applications.

Funder

Guilin University of Electronic Technology

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3