Numerical simulation on residual stresses of stainless steel SS-304 thin welded pipe

Author:

Arora Hitesh12ORCID,Singh Rupinder3,Brar Gurinder Singh4

Affiliation:

1. Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Kapurthala, India

2. Department of Mechanical Engineering, Lovely Professional University, Phagwara, India

3. Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, India

4. Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, Pauri, India

Abstract

The major concern in the high tech industries like oil and petroleum industries, automobiles, aeronautical, and nuclear power plants is the control of the defects like distortion in the welded joints and residual stresses occur due to arc welding on the circumferential joints of the thin pipes. Three-dimensional non-linear thermal and thermomechanical numerical simulations are conducted for the tungsten inert gas welding process of SS-304 stainless steel pipes. In this article, numerical analysis of the distribution of the temperature and the welding residual stress fields induced after the welding is done. Study on the effect of the welding heat input by varying the welding parameters (like welding current and welding speed) based on finite element simulations is conduit to examine the results on the residual stresses which is also called as the ‘locked-in’ stresses. The precision of the finite element model is validated for the welding residual stresses. The intention of this study is to provide the information to verify the validity of ongoing process circumferential manufacturing technology for thin-walled pipes, so to avoid the failure of these kinds of structures which are in service because of these intrinsic stresses.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3